Non - negative Matrix Factorization of Dynamic Images in Nuclear Medicine
نویسندگان
چکیده
-Recently suggested non-negative matrix factorization (NMF) seems to overcome fundamental limitations of factor analysis at least in theoretical aspect. NMF cost function uses Poisson statistics as a noise model, rather than the Gaussian statistics, and provides a simple learning rule, in contrast to the tricky optimization in factor analysis. To study the feasibility of NMF for the analysis of dynamic image sequences in nuclear medicine, NMF was applied to H2 O dynamic myocardial PET images acquired from dog studies, and the results were compared with those obtained by conventional factor analysis method. Using NMF we could obtain basis images corresponding to major cardiac components. Their time-activity curves showed reasonable shapes that we have been familiar with. With the assumption of proper number of factors, NMF presented good results at least similar with those by factor analysis. Our results showed that NMF would be feasible for image segmentation and factor extraction from dynamic image sequences in nuclear medicine.
منابع مشابه
Application of Non-negative Matrix Factorization to Dynamic Positron Emission Tomography
Recently suggested non-negative matrix factorization (NMF) seems to overcome fundamental limitations of factor analysis at least in theoretical aspect. NMF cost function uses Poisson statistics as a noise model, rather than the Gaussian statistics, and provides a simple learning rule, in contrast to the tricky optimization in factor analysis. To study the feasibility of NMF for the analysis of ...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملSpectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملFeasibility of using statistical tests in evaluation of non-uniformity [Persian]
Introduction: Non-uniformity test is essentially the only required daily QC procedure in nuclear medicine practice. Noise creates statistical variation or random error in a flood image. Non-uniformity on the other hand does not have statistical nature and may be regarded as systemic error. The present methods of non-uniformity calculation do not distinguish between these two types of erro...
متن کامل